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Abstract
Fisher statistics provides an information measure which, like that of Shannon,
is a functional of a distribution f . The latter solves an Euler equation to
minimize the functional. To make comparison with statistical derivations of
extended thermodynamics, calculations by Frieden, Plastino, and collaborators
are specialized to the case where f is a phase-space distribution approximating
a solution of the Liouville equation. The Euler equations are solved subject
to conditions specifying values of internal energy and fluxes, e.g. of heat
and momentum. The solution is compared with that of Jaynes which, with
information theory, provides an entropy model. The Fisher and Jaynes
entropies are identical only in equilibrium. The distributions agree in linear
approximation for a restricted set of variables. This set is large enough to
embrace all those needed in the classical non-equilibrium description of simple
fluids. Fisher–Euler solutions are not unique in non-equilibrium.

PACS numbers: 05.70.Ln, 05.20.Dd, 05.70.Ce

1. Introduction

Information theory, as developed by Jaynes [1], maximizes the Shannon information
entropy [2] subject to constraints which constitute the ‘information’, yielding an optimal
distribution consistent with these constraints. It has been found [3] that this procedure does
not always lead to a useful distribution, and so an alternative variational calculation has been
put forward [3, 4] based on the information measure of Fisher [5].

As a functional of f (x), the desired distribution for a variable x, the Fisher information
is [5]

I =
∫

dx f −1(df/dx)2. (1)

If I is minimized subject to specification of energy E = ∫
dx f (x)E(x), one obtains the usual

Boltzmann distribution [3]. The statistical theory based on minimizing I is called ‘estimation
theory’ [6]. It agrees with other approaches in equilibrium thermodynamic systems and gives
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interesting results in other cases, e.g. where the exact microscopic distribution obeys a diffusion
equation, for which case one can prove an H -theorem [7].

The distributions agree in linear approximation for a restricted set of variables. This set
is large enough to embrace all those needed in the classical non-equilibrium description of
simple fluids. The Fisher–Euler solutions are not unique in non-equilibrium.

We proceed to specialize (1) to the case of a pure, N -particle fluid whose phase-space
distribution f depends on the configuration coordinates �R ≡ {�ri} and momenta �P ≡ { �Pi}
(1 � i � N) of theN particles. Such a system has been used in conjunction with the Shannon–
Jaynes approach to provide a statistical entropy model. This model can be used [8–10] to derive
the phenomenological equations [11] of non-equilibrium thermodynamics from the Liouville
equation via a formalism of Robertson [12] which is exact.

Here we consider the distribution obtained by minimizing the Fisher information (1).
Under circumstances where this f agrees with Jaynes in linear approximation, the previous
work [11, 12] will still hold to the same level of approximation. It is necessary, however,
before drawing conclusions concerning the applicability of earlier statistical results to specify
for what choice of variables, e.g. χ in (3), the Jaynes distribution solves approximately the
Euler equation of Fisher theory.

We shall find that if the normalization of I is chosen so that the Fisher f agrees
with standard results in equilibrium, then the non-equilibrium linearized Fisher and Jaynes
distributions will agree for e.g. kinetic components of heat and momentum fluxes in liquids
and gases. If collisional transfer components are included, disagreement with Jaynes will
occur unless they are treated as separate, independent variables. There are essential differences
between Fisher and Jaynes in the predicted thermodynamic potentials and equations of state,
and we shall try to bring these out in what follows. Fisher statistics shows promise of predicting
the outcome of measurements of quantities that are not thermodynamic. These predictions are
in the form of equations of state relating the predicted value of a variable to be measured to
known values of a set of variables already measured.

To cast (1) in a form appropriate to an N -particle fluid, we write

I [f ] = �p

∫
dx f −1[∂f/∂ �P ]2 + �c

∫
dx f −1[∂f/∂ �R]2 (2)

where ∂f/∂ �P and ∂f/∂ �R are the 3N -dimensional vectors whose components are, respectively,
∂f/∂ �Pα

i and ∂f/∂�rαi (1 � i � N ; α = x, y, z). The dimensional constants �p and �c are
determined in what follows such that minimization of I [f ] subject to specification of N and
internal energyE will yield an equilibrium result in agreement with other statistical equilibrium
models in the classical and thermodynamic limits. This agreement is discussed in section 3.
It does not entail the agreement between linearized Fisher and Jaynes distributions in non-
equilibrium. That agreement occurs for certain variables which are eigenfunctions of the
differential operators in the Euler equation.

More recent formulations of Fisher statistics have used derivatives with respect to the
mean values {θi} of variables {xi} in the functional I rather than derivatives ∂f/∂xi . The latter
can be used if f = f ({xi − θi}). This condition is implicit in what follows. In the fluid that
we discuss, the mass centre is fixed and the mass velocity zero, so the {θi} vanish.

Once I [f ] has been minimized subject to conditions which specify the values of
thermodynamic state variables, and we have obtained the optimal distribution fµ, we
might expect that SF = −κI [fµ] (κ = Boltzmann constant) is a statistical analogue of
thermodynamic entropy. If this is so, then SF must obey a Gibbs equation relating dSF to
dU and to the differentials of any additional state variables. Such an equation will be given
in section 2, based on existing literature. In section 3, the Euler equation for minimization
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is derived and solved in equilibrium where f is shown to agree with Boltzmann statistics in
the thermodynamic limit. In section 4, a linearized solution to the Euler equation is found
for certain non-equilibrium problems, e.g. momentum and heat flow in a dilute gas where the
linearized optimal distribution agrees with Shannon–Jaynes.

In a fluid where collisional transfer in transport is taken into account, it is shown, for the
case of pressure, that Fisher and Shannon information measures yield differing distributions
and, in general, differing physical predictions. It is demonstrated in section 5 that disagreement
between the two statistical approaches can be avoided if the kinetic and collisional transfer
components are taken to be independent variables and if we modify the usual operator
representation for the collisional transfer component in non-equilibrium.

When the distributions differ, so do the non-equilibrium entropies. A discussion is given
in section 6. There it is pointed out that whether the Fisher or Jaynes entropy model is to
be preferred in non-equilibrium thermodynamics can best be decided by deriving from the
Liouville equation dynamical equations for rates of change of state variables and checking
consistency with the entropy principle. That will be the subject of a subsequent paper.

2. Gibbs equation

Let us suppose that the thermodynamic description of the system is formulated in terms of a
set of state variables

ri =
∫

f (x)Ai(x) dx (0 � i � ν) (3)

where f (x) is a solution of the Liouville equation and the set {Ai(x)} are dynamical functions
of the phase coordinates collectively denoted by x. In thermodynamics, the set {Ai} must
include the Hamiltonian Ĥ so that the {ηi} include the internal energy. The values {ηi} are
obtained empirically, and the optimal distribution fµ(x) minimizes I [f ] whilst satisfying
conditions (3).

The variational problem for calculation of f can be formulated as

δI [f ] −
∫

dx δf

[
α +

ν∑
i=0

λiAi(x)

]
= 0. (4)

Here α and the {λi} are Lagrange multipliers, with the {λi} determined such that, when the
variational solution fµ is substituted into equation (3), the latter are satisfied identically. α

provides for the normalization of fµ. Equation (4) determines the functional derivative of I [f ]
when f = fµ. It will continue to hold with f = fµ and with δf caused by changes in the
variables ηi . Thus

dI [fµ] =
∫

dx δI/δf |f=fµ dfµ =
∑
i�0

λi

∫
dx Ai(x) dfµ =

∑
i�0

λi dηi. (5)

For the case of a simple fluid in equilibrium with a heat bath and having a fixed
number N of particles in a fixed volume Ṽ , there is just one variable, the internal energy
U , and one associated function, A0 = Ĥ (x), the Hamiltonian, and one Lagrange multiplier,
λ0 = −β = −(κT )−1. However, as a statistical estimation procedure, minimization of I [f ]
is not limited to equilibrium, and so equation (5) will hold when there are additional state
variables {ηi} (i > 0). The {λi}i>0 and {ηi}i>0 will vanish in equilibrium. In the formulation
known as ‘extended thermodynamics’ [11] these additional variables can include the fluxes of
heat, momentum, and particle diffusion in a mixture.
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If we suppose that −κI [fµ] = SF is a statistical analogue of thermodynamic entropy,
equation (5) becomes

T dSF = dU −
∑
i>0

(λi/β) dηi (6)

which is the usual expression [11] of the Gibbs equation for a fluid confined within rigid
boundaries. The thermodynamic ‘forces’ are φi = −λi/β (1 � i � ν). Equations (5)
and (6) have essentially been obtained by Frieden et al [13] who show that one can effect
a Legendre transformation from U and the set {ηi} to the {λi}i�0 as the set of independent
variables. However, such a result is far from conclusive evidence that SF can be used in
non-equilibrium as a thermodynamic entropy analogue. We have shown that SF is consistent
with (6) which is a fundamental postulate of extended non-equilibrium thermodynamics. Much
of the mathematics has already been done [13]. What is done here is to define the variables
and parameters used in what follows and to cast the results in thermodynamic language.

3. Euler equations for the minimization procedure and equilibrium solution

If we substitute from (2) into (4) and effect a partial integration, we obtain the condition for
an extremum:

�p[f −2(∂f/∂ �P)2 + (∂/∂ �P){2f −1(∂f/∂ �P)}] + �c[f
−2(∂f/∂ �R)2

+(∂/∂ �R){2f −1(∂f/∂ �R)}] + α +
ν∑

i=0

λiAi(x) = 0. (7)

The structure of this equation has been discussed in the literature [13]. The form given here
is appropriate to the case of an N -particle fluid where the {Ai} are the Hamiltonian Ĥ (x)

and additional variables such as fluxes of momentum and energy. We can seek equilibrium
and non-equilibrium solutions for f and compare them with the Jaynesian maximum-entropy
distribution. Substituting the solutions into the Fisher and Jaynesian entropy functionals, we
can see how these differ. In particular, we can see whether, when �p and �c are determined
so as to make the equilibrium solutions agree, the Jaynesian f is a solution of (7).

Equation (7) can be simplified in equilibrium, where i = 0 is the only term in the sum, if
we set [13]

f ≡ ψ2 (8a)

(4�p/ψ)∂2ψ/∂ �P 2 + (4�c/ψ)∂2ψ/∂ �R2 + α +
ν∑

i=0

λiAi(x) = 0. (8b)

In equilibrium,

λ0 = −β = −(κT )−1 (9a)

A0(x) = Ĥ (x) = K( �P) + V ( �R) (9b)

λi = 0 (i > 0) (9c)

where K and V are respectively kinetic and potential energy functions. The derivatives in (8b)
are 3N -dimensional Laplacians.

When (9a)–(9c) are used in (8), the equation is separable. We set

ψ = ψp( �P)ψc( �R) (10a)

4�p ∂
2ψp/∂ �P 2 + {α − βK( �P)}ψp = Cψψp (10b)

4Ic ∂
2ψc/∂ �R2 − βV ( �R)ψc = −Cψψc (10c)

where Cψ is a constant, independent of the phase coordinates.
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Equations with the structure of (10b), (10c) are found in the literature [13]. They permit us
to derive results consistent with the canonical ensemble if �p and �c are appropriately defined.
The canonical momentum distribution is

ψp = Cp exp

[
− β

N∑
i=1

(p2
i /4m)

]
(11)

where m is the particle mass. This is a solution of (10b) provided that

β�p = 1
2m (12a)

−α + Cψ = −3N. (12b)

Equation (10c) is a stationary Schrödinger equation, describing a system with energy εβ , if

Cψ = βεβ (13a)

4�c = h̄2β/2m. (13b)

In the thermodynamic limit, the energy distribution multiplied by the density of states is sharply
peaked, and εβ corresponds to the most probable energy which depends on β. The canonical
ensemble in the thermodynamic limit permits calculation of configuration-space averages using
ψ2
c as the configuration-space distribution, with ψc satisfying (10c). Since the classical and

quantum density matrices approach each other as h̄ → 0 and β → 0 [15], we obtain an
f = ψ2 consistent with the classical canonical distribution in these limits.

Equation (10c) has been derived by Frieden et al [13]. Here we find the equilibrium
solution in order to evaluate �p, �c for use in the non-equilibrium case discussed in section 4.
Since we are evaluating �c in (13b) to obtain agreement with alternative approaches, the Euler
equations given here are not a statistical derivation of quantum mechanics. ψ2

pψ
2
c is a classical

distribution in both �P - and �R-space, and the derivation given here applies only to the classical
limit.

Since in equilibrium the result of minimizing the Fisher information agrees with the result
of maximizing the Shannon entropy, one should expect the Fisher and Shannon functionals
in equilibrium to be equivalent in the classical and thermodynamic limits. From (2), with
f = ψ2, we find that

−κI [f ] = −4κ�p

∫
d �P (∂ψp/∂ �P) − 4κ�c

∫
d �R (∂ψc/∂ �R)2

= 4κ�p

∫
ψp ∇2

�Pψp d �P + 4κ�c

∫
ψc ∇2

�Rψc d �R

= κβ

∫
ψ2
pK( �P) d �P − 3Nκ + κβ

∫
ψ2
c V ( �R) d �R − κCψ

= κβ

∫
f (0)
µ (K( �P) + V ( �R)) dx − 3Nκ − κCψ (14)

where f (0)
µ ≡ ψ2

pψ
2
c is the equilibrium Fisher distribution. Here we have invoked (10b), (10c).

The canonical partition function, when the energy distribution is sharply peaked, is
approximately

z ∼= νβ(εβ) exp(−βεβ) (15)

where νβ is a small number of terms whose energies are close to the peak. If the classical and
quantum distributions are equivalent in the h̄ → 0, β → 0 limits, we should have, with SJ the
Jaynesian entropy,
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f (0)
µ ( �P , �R) = Z−1 exp(−βK( �P) − βV ( �R)) (h̄ → 0, β → 0) (16a)

− ln f (0)
µ = κβ(K + V ) + κ lnZ (16b)

SJ = −κ

∫
f (0) ln f (0) dx = κβ

∫
f (0)(K + V ) dx + κ lnZ

= −κI [f (0)] + 3Nκ + κ ln νβ(εβ). (16c)

In (16c) we have used (14). In equilibrium the Fisher and Shannon entropy functionals differ
by a constant, since νβ  N .

4. Linear non-equilibrium solution and comparison with Jaynes

In the previous section an equilibrium distribution ψ0 = ψpψc has been obtained and �p, �c

determined to make ψ0 consistent with the canonical ensemble in the thermodynamic limit. It
is now possible to consider the case where, in addition to λ0 = −β, there is a λ1 �= 0 and an
associated A1(x) whose average η1 = 〈A1〉 is a non-equilibrium state variable which, like λ1,
vanishes in equilibrium. Under these circumstances, equation (8b) becomes

(4�p/ψ)∂2ψ/∂ �P 2 + (4�c/ψ)∂2ψ/∂ �R2 = −α + β(K + V ) − λ1 � A1. (17)

In general, λ1 and A1 are tensors of the same order, with λ1 � A1 a fully contracted tensor
product. For example, A1 in the case of pressure is a tensor of rank two and, in the case of
heat flux, it is a vector obtained by contraction of a tensor of rank three. If A1 is pressure, λ1,
η1 are traceless.

If the solution to (17) can be expanded in powers of λ1, the linearized non-equilibrium
form should be

ψ = ψ0[1 + λ1 � φ1] (18)

with φ1 a tensor to be determined by substituting the ansatz (18) into (17) and comparing
terms linear in λ1. In a dilute gas, the dissipative fluxes used as non-equilibrium state variables
depend only on �P . Remembering that ψ0 solves the terms in (17) which are zero order in λ1,
we obtain

4�p[∂2φ1/∂ �P 2 − (β/m) �P · ∂φ1/∂ �P ] = −A1. (19)

In the Grad theory of dilute gases [16], the heat and momentum fluxes are represented
by tensor Hermite functions. To draw general conclusions about the solution of (19) in cases
where such a representation is used, let

A1 =
N∑
i=1

c(κT )n/2H(n)( �p) (20a)

�pj ≡ �pj (mκT )−
1
2 (20b)

where c is a constant andH(n) is a Hermite tensor function of order nwhich may be contracted.
In terms of dimensionless momenta, equation (19) becomes

2
N∑
i=1

[∂2φ1/∂ �p2
j − �pj · ∂φ1/∂ �pj ] = −c(κT )n/2

∑
j

H (n)( �pj ). (21)

A particular solution to (21) is found immediately in the form

φ1 = (c/2n)(κT )n/2
∑
j

H (n)( �pj ) = (2n)−1A1. (22)
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In this case,A1 is an eigenfunction of the differential operator in (21), exemplifying the solution
considered in equation (8). As Grad has shown [16], all the variables needed to describe the
non-equilibrium state and transport in dilute gases can be found by choosing the tensor Hermite
functions to represent A1. The same Hermite functions can represent the kinetic components
of fluxes of momentum and energy in a dense fluid. To find λ1 to leading order in η1 ≡ 〈A1〉,
we substitute (22) into (18) and use the result to calculate λ1 from (3). This gives, to terms
linear in λ1,

η1 =
∫

ψ2A1( �P) d �P = n−1
∫

ψ2
0λ1 · A1A1 d �P . (23)

Equation (23) is almost the same as the equation that we obtain via the Shannon–
Jaynes approach. The latter yields a linearized distribution of the form (18) if we make
the replacements λ1 → −γ1 in (18) and (6) and φ1 → nγ1, with γ1 the Lagrange multiplier
introduced in maximizing the Shannon entropy. The Jaynesian approach gives (23) with
λ1 → −γ1 and without the factor n−1. Thus

−κ−1(∂SF /∂n1) = λ1 = −nγ1 = −nκ−1(∂SJ /∂n1) (24)

relates the derivatives of the Fisher entropy SF and the Jaynes entropy SJ when these are used
as statistical models of non-equilibrium thermodynamic entropy. If there are several variables
η1, η2, . . . having different associated values of n, the O(η2

j ) non-equilibrium term in SF will be
the corresponding term in SJ multiplied by nj , and nj will depend on j . The non-equilibrium
O(η2) contributions to SF and SJ involving Hermite tensors of different tensorial order have
different proportionality constants.

However, to terms linear in η1, ψF and ψJ are identical. We have to linear terms

ψF = ψ0[1 + λ1 � φ1] = ψ0[1 − γ1 � (nφ1)] = ψJ . (25)

So long as we do not identifySF in non-equilibrium with thermodynamic entropy, the linearized
Fisher and Jaynes formalisms give the same physical predictions for a dilute gas. We have
shown here only that SF and SJ disagree as thermodynamic entropy models in non-equilibrium.
To choose between them for the calculation of thermodynamic functions, we must derive via the
Liouville equation the dynamical equation for η̇1 as has been done [8] in the case of Jaynesian
entropy. One can then see whether the irreversible part of ṠF is positive definite.

Whilst the procedures of Fisher and Jaynes yield the same linearized non-equilibrium
distribution in the case of dilute gases, where the {Ai(x)} can be represented by tensor Hermite
functions of �P , this is no longer the case when Ai(x) depends on the configuration �R. To see
this, consider the potential χij = χ(�rij ), with �rij ≡ �rj −�ri the position of j relative to i. When
A1 is an operator for pressure, we have A1 = AK

i (
�P)+AR

1 (
�R), φ1 = φK

1 +φR
1 , and A1 is given

by (20a) with n = 2 whilst

AR
1 = − 1

2

∑
i,j

�rij �Fij +
∑
i

�δ(i)κT (26a)

�Fij = −∇�ri χij (26b)

4�c[∂
2φR

1 /∂R
52 − β(∂V/∂ �R) · (∂φR

1 /∂R)] = −AR
1 (

�R). (26c)

�δ(i) is a unit tensor in the configuration space of particle i. To arrive at (26a), we start with
the operator (momentum flux multiplied by Ṽ )

P̂ =
∑
i

m−1 �pi �pi − 1
2

∑
i,j

�rij �Fij = κTiH
(2)( �pi) + AR

1 (
�R). (27)

Thus if AK
1 (

�P) is taken proportional to
∑

i H
(2)( �pi) as in (15), then AR

1 is given by (26a).
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Equation (26c) has the solution:

φR
1 = −(κT /8�c)

∑
i

�ri�ri = −(m/h2)(κT )2
∑
i

�ri�ri . (28)

This solution is not proportional to AR
1 (

�R), and so we do not obtain a distribution in agreement
with the Jaynesian one. One can add to φR

1 two solutions, with arbitrary multiplicative
constants, of the result of equating to zero the left-hand member of (26c). Predictions of
the Fisher approach can be made, by adjusting the constants, to agree with Jaynes in particular
cases or with other results such as the fluctuation-dissipation theorem. However, if one can
make λ1 = −γ1 in this way, then the present result cannot be extrapolated to high dilution.
If A1 is not an eigenfunction of the �p-dependent operator in the Euler equation, physical
predictions of the Fisher and Jaynes distributions will not in all cases be the same, even in
linear approximation. This is not wholly unexpected. The question of whether Fisher or Jaynes
statistics represents better the behaviour of measured properties of the system is not at issue
here, since that needs to be settled experimentally.

The reason that the Fisher and Jaynes distributions are not the same, when collisional
transfer is included in the pressure, is that AR

1 (
�R) is not an eigenfunction of the differential

operator in (26c). AR
1 (

�R) could be expanded in eigenfunctions of the operator on the left, and
the eigenfunctions taken to be variables. Then, however, there would be an infinity of variables,
whereas a thermodynamic description comprises a small number which are measurable. In the
following section, we find it possible to represent the collisional pressure by an operator which
multiplies AR

1 by a function of �P . The result is an eigenfunction of the differential operator
in (21). Equation (26c) yields a solution of (17) in the form of a sum of powers of h̄. Terms
with h̄n (n � 1) approach zero in the classical limit.

5. Representation for collisional transfer components leading to agreement between
linearized Jaynes and Fisher distributions

We have seen in the preceding section that when the collisional transfer component AR
1 is

included in the operator A1, we do not get an eigenfunction of the operator in (26c). A
way around this difficulty is found if we take the kinetic and collisional transfer components

of pressure to be independent variables, represented respectively by P̂k and ˆ̃P c. P̂k is the
operator in (20a), and

ˆ̃P c ≡ − 1
2mκT

∑
i,j

(p2
i − 3){�rij �Fij − 1

3 �rij · �Fij
�δ}. (29)

P̃c ≡ 〈 ˆ̃P c〉 is taken to be traceless, so that it relaxes to zero in equilibrium.
If we initially ignore �c and terms O(h̄2) in the Euler equation, with a view to taking

eventually the classical limit h̄ > 0, we find that a solution to the Euler equation (17) is
obtained in the form

ψ = ψ0[1 + λ1φ1 + λcφc] + O(h̄2) (30a)

φc = − 1
8mκT

∑
i,j

p2
i {�rij �Fij − 1

3 �rij · �Fij
�δ} (30b)

with a term λc
ˆ̃P c now appearing in the right-hand member of the Euler equation, since P̃c is

now an independent variable. λc, like λ1, is a traceless tensor. ˆ̃P c can be used as a measure of
the traceless collisional pressure, Pc ≡ 〈− 1

2

∑
i,j �rij �Fij − 1

3 �rij · �Fij
�δ〉 since
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〈 ˆ̃P c〉 = 2λc
∑

ψ2
0φc

ˆ̃P c dx = (λ/8)N〈p2
i 〉0(p

2
i − 3mκT )(�r �f )0

= 3
4λN(mκT )2(�r �f )0 ∼= mκT 〈P̂c〉 = mκTPc (31)

where 〈P̂c〉 is the traceless collisional pressure and (�r �f )0 is a traceless dyadic. To terms linear

in the λs, 〈 ˆ̃P c〉 proportional to 〈P̂c〉 can be represented by an operator which enters in the same
way into both the Jaynes and Fisher distributions. We can prove a similar result for �Qc, the
collisional component of heat flux. The corresponding operator is

Ṽ �Qc =
∑
i

[
1
2

∑
j

φij �δ − 1
2

∑
j

�rij �Fij − h̃�δ
]

· �pi/m (h̃ ≡ enthalpy/particle) (32)

which is a contracted product of the second-rank tensor in square brackets with m−1H
(1)
i =

pi/m. This will be an eigenfunction of the operator in (21) with n = 1. If �Qc is taken as
an independent variable with its own Lagrange multiplier λqc , then (30a) will acquire terms

λK �̂QK +λc �̂Qc. Since �QK is a contracted tensor with n = 3 and �Qc has n = 1, we cannot obtain

a Jaynesian distribution for a single variable, i.e. �QK + �̂Qc with a single Lagrange multiplier.
To obtain the Jaynesian λs, we must divide λK by 3 and λ

q
c by 1.

Accordingly, it is seen that if kinetic and collisional terms for components of dissipative
fluxes are treated as independent variables, then in a dense fluid, the linearized Fisher and
Jaynes distributions for these variables will agree in non-equilibrium. However, if P̂K + P̂c

and �̂QK + �̂Qc are treated in each case as a single independent variable, the linearized Fisher and
Jaynes distributions will disagree. If we substitute the h̄ → 0 solution into the O(h̄2) terms in
the Euler equation, we obtain a perturbation quantum correction which we need not take into
account in a purely classical calculation.

In the following section, we shall point out that if variables are chosen such that the
solutions of the Fisher–Euler equations do not solve those of Jaynes, then, in general, the
entropy principle will not be satisfied, and so the Fisher entropy will not be a valid model
of thermodynamic entropy. In the linear case, we can do this without deriving the general,
nonlinear evolution equations of Fisher statistics.

6. Discussion

The foregoing sections describe the application of Fisher statistics [5] to classical fluids with
the ultimate objective of possibly using the Fisher information as an entropy model from
which we can calculate other thermodynamic potentials. The mathematical properties of
Fisher distributions have been discussed extensively in the literature [3–5, 7, 13], and so the
original contribution of sections 1–3 of the present paper resides in specializing the variational
calculation to the case of a classical n-particle fluid where the arguments of f are �R and �P .

It has been established that, for a special set of variables sufficiently broad to comprise all
those needed in the existing literature on non-equilibrium thermodynamics of classical fluids,
the Jaynesian distribution will solve, in linear approximation, the Euler equation of Fisher
statistics as h̄ → 0.

At this point, we must consider the fact that the linear approximate solutions of Jaynes
type are not unique solutions of the Euler equation. To these solutions can be added a solution
to the homogeneous equation obtained by equating to zero the right-hand member of (21). This
addition can introduce two adjustable parameters into φ1 yielding a distribution non-Jaynesian
in linear approximation. Such a distribution, after adjustment of the added parameters such
that it predicts observed values of quantities such as relaxation times or transport coefficients,
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may yield improved predictions of still other variables {〈Xj 〉} not appearing in the Jaynesian
distribution and not previously measured. The non-Jaynesian solutions of (21) may be
statistically useful, but this must be established empirically.

However, if ψ is a linear sum of terms λiφi , as in (30a), one can carry out [8,12] an exact
calculation of linearized evolution equations for the variables {Ŷi}, with Ŷi the operators in
the right-hand side of (17). The coefficients in these equations are time correlations of Kubo–
Green type. These will fail, in general, to exhibit Onsager symmetry if φi is not proportional
to Ŷi , since the correlations 〈φiŶi〉 are asymmetric. Therefore, in an experiment in which we
observe the evolution of a small number of state variables, we need to use Jaynesian solutions
if the evolution equations are to agree with irreversible thermodynamics. The non-Jaynesian
φi may be useful in predicting the outcome of measurements of additional variables observed
in a separate experiment performed under similar conditions.

In the present paper, we have examined solutions of the Euler equation for the Fisher
distribution f , and we have found that, in general, the choice of variables for which Jaynes-type
solutions are found is the only one consistent with non-equilibrium thermodynamics. Other
choices give phenomenological coefficients not consistent, in general, with Onsager–Casimir
reciprocity. This does not answer the question of whether Fisher’s information measure is
proportional to a model for thermodynamic entropy. To do that, one has to calculate dSF /dt
and show that it is �0 in a closed system (entropy principle). That will be the subject of a
subsequent paper.
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